ATI 2301 DC-DC Converter

APPLICATIONS

This IC is widely used in various applications, such as cellular phone, portable electronics, wireless devices, cordless phone, computer Peripherals, Battery Powered Widgets, Electronic Scales, Digital Frame, etc.

DESCRIPTION

The ATI2301 is a step-down current-mode, DC-DC converter. At heavy load, it works at the constant frequency PWM mode which has good stability and transient response. To ensure the longest battery life under light load in portable applications, the ATI2301 features a power-saving pulse-skipping modulation (PSM) mode, which reduces quiescent current to save power.

It comes with an internal power switch and a synchronous rectifier minimizing the external part count with high efficiency. During shutdown, the input is disconnected from the output and the shutdown current is less than 0.1 uA. To prevent battery from being over discharged, it has a under-voltage lockout circuit, to shut down the converter upon detecting the input voltage below a preset value.

The ATI2301 has an input voltage from 2.5V to 5.5V, allowing the use of a single Li+/Li-polymer cell battery, multiple Alkaline/NiMH cell battery, USB port power, and other 2.7 to 5V standard power sources. The output voltage can be set from 0.6V to the input voltage, while the part number suffix ATI2301-XX indicates a pre-set output voltage versions: adjustable. The maximum output current limit is 800mA.

The ATI2301 is available in a compact and easy soldering SOT23-5 package.

FEATURES

- High Efficiency: up to 96%
- Internal Synchronous Rectifier
- Low Quiescent Current: 40μA
- Output current: up to 800mA
- High Switching Frequency: 1.5MHz
- Under-Voltage Lockout
- Soft Start
- Short Circuit Protection
- Small SOT23-5 Package
- Pb-Free
ATI2301 DC-DC Converter

ATI2301

Typical Application

Figure 3. Adjustable Output Voltage

Figure 4. Block Diagram
Pin Description

Table 1.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EN</td>
<td>Enable control input. Force this pin voltage above 1.5V, enables the chip, and below 0.3V shuts down the device.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SW</td>
<td>The drains of the internal main and synchronous power MOSFET.</td>
</tr>
<tr>
<td>4</td>
<td>VIN</td>
<td>Chip main power supply pin</td>
</tr>
<tr>
<td>5</td>
<td>VOUT/FB</td>
<td>VOUT: Output voltage feedback pin, an internal resistive divider divides the output voltage down for comparison to the internal reference voltage. FB: Feedback voltage to internal error amplifier, the threshold voltage is 0.6V.</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability all voltages are with respect to ground.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td></td>
<td>-0.3V to 6.0V</td>
<td></td>
</tr>
<tr>
<td>EN, FB Pin Voltage</td>
<td></td>
<td>-0.3V to VIN</td>
<td></td>
</tr>
<tr>
<td>SW Pin Voltage</td>
<td></td>
<td>-0.3V to (VIN+0.3V)</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td></td>
<td></td>
<td>150 °C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td></td>
<td>-65 °C to 150 °C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td></td>
<td></td>
<td>300 °C, 5 sec</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

Supply Voltage..........................2.5V to 5.5V

Operating Temperature Range.............-40 °C to 85 °C

Junction Temperature Range.........-40 °C to 125 °C

Thermal Information

Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Package</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance (Junction to Case)</td>
<td>SOT-23-5</td>
<td>θJC</td>
<td>130</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance (Junction to Ambient)</td>
<td></td>
<td>θJA</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Internal Power Dissipation</td>
<td></td>
<td>PD</td>
<td>400</td>
<td>mW</td>
</tr>
</tbody>
</table>
ATI2301 DC-DC Converter

Characteristics

\[T_A = 25^\circ C, \ V_{IN} = 3.6V, \ V_O = 1.8V, \ C_{IN} = 10 \mu F, \ L = 4.7 \mu H, \] unless otherwise noted.

Table 3.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>Test Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>Input Voltage Range</td>
<td></td>
<td>2.5</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{FB})</td>
<td>Regulated Feedback Voltage</td>
<td></td>
<td>0.588</td>
<td>0.6</td>
<td>0.612</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta V_{FB})</td>
<td>Reference Voltage Line Regulation</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td>%/V</td>
</tr>
<tr>
<td>(V_O)</td>
<td>Regulated Output Voltage Accuracy</td>
<td>(I_O = 100mA)</td>
<td>-3</td>
<td>+3</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(I_{PK})</td>
<td>Peak Inductor Current</td>
<td>(V_{IN} = 3V, \ V_{FB} = 0.5V) or (V_O = 90%)</td>
<td></td>
<td>1.2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(LNR)</td>
<td>Output Voltage Line Regulation</td>
<td>(V_{IN} = 2.5V) to (5V, I_O = 10mA)</td>
<td>0.2</td>
<td>0.5</td>
<td></td>
<td>%/V</td>
</tr>
<tr>
<td>(LDR)</td>
<td>Output Voltage Load Regulation</td>
<td>(I_O = 1mA) to (800mA)</td>
<td>0.5</td>
<td>1.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(I_Q)</td>
<td>Quiescent Current</td>
<td>No load</td>
<td>40</td>
<td>70</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>(I_{SD})</td>
<td>Shutdown Current</td>
<td>(V_{EN} = 0V)</td>
<td>0.1</td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>(F_{OSC})</td>
<td>Oscillator Frequency</td>
<td>(V_O = 100%)</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>MHz</td>
</tr>
<tr>
<td>(V_{EN} = 0V) or (V_O = 0V)</td>
<td></td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>(R_{DS(ON)})</td>
<td>Drain-Source On-State Resistance</td>
<td>(I_{DS} = 100mA)</td>
<td>P MOSFET</td>
<td>0.3</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N MOSFET</td>
<td>0.35</td>
<td>0.5</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>(I_{LSW})</td>
<td>SW Leakage Current</td>
<td></td>
<td>±0.01</td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>(V_{EH})</td>
<td>EN Threshold High</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{EL})</td>
<td>EN Threshold Low</td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{EL})</td>
<td>EN Leakage Current</td>
<td></td>
<td>±0.01</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>(\eta)</td>
<td>High Efficiency</td>
<td></td>
<td>96</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>OTP</td>
<td>Over Temperature Protection</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>OTH</td>
<td>OTP Hysteresis</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
Purchasing Information

Table 4.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Output Voltage</th>
<th>Output Current</th>
<th>Marking</th>
<th>Standard Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATI2301AAABADJ</td>
<td>Adjustable</td>
<td>800mA</td>
<td>BAAYW</td>
<td>3000Units/Tape&Reel</td>
</tr>
</tbody>
</table>

Dimensions

Table 5.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>A</th>
<th>A1</th>
<th>A2</th>
<th>b</th>
<th>c</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec</td>
<td>1.15±0.1</td>
<td>0.05±0.05</td>
<td>1.10±0.05</td>
<td>0.35±0.05</td>
<td>0.15±0.05</td>
<td>2.92±0.1</td>
<td>1.6±0.1</td>
</tr>
<tr>
<td>Symbol</td>
<td>E1</td>
<td>e</td>
<td>e l</td>
<td>L</td>
<td>L1</td>
<td>0</td>
<td>4°±4°</td>
</tr>
<tr>
<td>Spec</td>
<td>2.8±0.15</td>
<td>0.950TYP</td>
<td>1.90±0.1</td>
<td>0.60REF</td>
<td>0.45±0.15</td>
<td>4°±4°</td>
<td></td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Unless specified otherwise, the following conditions apply: \(T_A = 25^\circ C \), \(C_{IN} = 10 \mu F \), \(C_o = 10 \mu F \), \(L = 4.7 \mu H \), for efficiency curves and waveforms.

Efficiency vs Output Current (Vo=1.2V)

![Efficiency vs Output Current (Vo=1.2V)](image1)

Efficiency vs Output Current (Vo=1.5V)

![Efficiency vs Output Current (Vo=1.5V)](image2)

Efficiency vs Output Current (Vo=1.8V)

![Efficiency vs Output Current (Vo=1.8V)](image3)

Efficiency vs Output Current (Vo=2.0V)

![Efficiency vs Output Current (Vo=2.0V)](image4)

Efficiency vs Output Current (Vo=2.5V)

![Efficiency vs Output Current (Vo=2.5V)](image5)

Efficiency vs Output Current (Vo=2.8V)

![Efficiency vs Output Current (Vo=2.8V)](image6)

Efficiency vs Output Current (Vo=3.0V)

![Efficiency vs Output Current (Vo=3.0V)](image7)

Efficiency vs Output Current (Vo=3.3V)

![Efficiency vs Output Current (Vo=3.3V)](image8)
Efficiency vs Input Voltage (Vo=1.2V)

Efficiency vs Input Voltage (Vo=1.5V)

Efficiency vs Input Voltage (Vo=1.8V)

Efficiency vs Input Voltage (Vo=2.5V)

Efficiency vs Input Voltage (Vo=2.8V)

Efficiency vs Input Voltage (Vo=3.3V)

Figure 13. Input Voltage (V)

Figure 14. Input Voltage (V)

Figure 15. Input Voltage (V)

Figure 16. Input Voltage (V)

Figure 17. Input Voltage (V)

Figure 18. Input Voltage (V)
ATI2301 DC-DC Converter

ATI2301

Reference Voltage vs Input Voltage

Output Voltage vs Load Current

Figure 19. Input Voltage (V)

Figure 20. Load Current (mA)

Reference Voltage vs Temperature

Output Voltage vs Temperature

Figure 21. Temperature (°C)

Figure 22. Temperature (°C)

Reference Voltage vs Load Current

Output Voltage vs Output Current

Figure 23. Load Current

Figure 24. Output Current (mA)
ATI2301 DC-DC Converter

ATI2301

Dynamic Supply Current vs Input Voltage

![Figure 25. Input Voltage (V)](image)

Dynamic Supply Current vs Temperature

![Figure 26. Temperature (°C)](image)

Rdson vs Input Voltage

![Figure 27. Input Voltage (V)](image)

Rdson vs Temperature

![Figure 28. Temperature (°C)](image)

Oscillator Frequency vs Supply Voltage

![Figure 29. Supply Voltage (V)](image)

Oscillator Frequency vs Temperature

![Figure 30. Temperature (°C)](image)
Typical Performance Characteristics
Unless otherwise specified, the following conditions apply: $T_A = 25^\circ C$, $C_{IN} = 10 \mu F$, $C_o = 10 \mu F$, $L = 4.7 \mu H$ for efficiency curves and waveforms.

Figure 31. Load Transient
$I_o = 0-800 \ mA \ V_o = 1.8V \ V_{IN} = 3.6V$

Figure 32. Load Transient
$I_o = 50-800 \ mA \ V_o = 1.8V \ V_{IN} = 3.6V$

Figure 33. Load Transient
$I_o = 200-800 \ mA \ V_o = 1.8V \ V_{IN} = 3.6V$

Figure 34. Start-up from Shutdown
$V_o = 1.8V \ V_{IN} = 3.6V$

Application Information

The basic ATI2301 application circuit is shown on Page 2. External component selection is determined by the load requirement, selecting L first and then CIN and COUT.

Inductor Selection

For most applications, the value of the inductor will fall in the range of 1μH to 4.7μH, which is chosen according to the desired ripple current. Large value inductors lead to higher ripple currents. Higher V\text{IN} or V\text{OUT} also increases the ripple current as shown in equation 1. For set ripple current, this is a reasonable starting point \(\Delta I_L = 320\text{mA} (40\% \text{ of } 800\text{mA}) \)

\[
\Delta I_L = \frac{1}{(f)(L)} V_{\text{OUT}} \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}} \right)
\]

The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation. Thus, a 1120mA rated inductor is enough for most applications (800mA + 320mA). For higher efficiency, low DC-resistance inductor is an option.

CIN and COUT Selection

In continuous mode, the source current of the top MOSFET is a square wave of duty cycle \(V_{\text{OUT}}/V_{\text{IN}} \). A low ESR input capacitor sized for the maximum RMS current should be used to prevent large voltage transients. The maximum RMS capacitor current is:

\[
C_{\text{IN \ required}} I_{\text{RMS \ IN}} = \frac{I_{\text{OUT}}}{2}. \text{This condition is commonly used because even significant deviations do not offer much relief. The capacitor manufacturer’s ripple current ratings are often based on 2000 hours of life. This makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required.}

The selection of COUT is driven by the required effective series resistance (ESR). Usually, when the ESR requirement for COUT has been met, the RMS current rating will exceed the IRipple (P-P) requirement. The output ripple \(\Delta V_{\text{OUT}} \) is determined by:

\[
VV_{\text{OUT}} = VI_L \left(ESR + \frac{1}{8fC_{\text{OUT}}} \right)
\]

Where \(f \) = operating frequency, \(C_{\text{OUT \ required}} \) = output capacitance and \(\Delta I_L \) = ripple current in the inductor. For a fixed output voltage, the output ripple is highest at maximum input voltage since \(\Delta I_L \) increases with input voltage.

Using Ceramic Input and Output Capacitors

Higher values, lower cost ceramic capacitors come in smaller case sizes now. They are ideal for switching regulator applications due to their high ripple current, high voltage rating and low ESR. By using ceramic capacitors, low output ripple and small circuit size can be achieved.

When choosing the input and output ceramic capacitors, choose the X5R or X7R dielectric formulations, for they have the best temperature and voltage characteristics of all the ceramics for a given value and size.

Setting the Output Voltage

The internal reference is 0.6V (Typical). The output voltage is calculated as below:

\[
V_o = 0.6 \times \left(1 + \frac{R_1}{R_2}\right)
\]

The output voltage is shown Table 1 below.

<table>
<thead>
<tr>
<th>(V_0)</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2V</td>
<td>100K</td>
<td>100K</td>
</tr>
<tr>
<td>1.5V</td>
<td>150K</td>
<td>100K</td>
</tr>
<tr>
<td>1.8V</td>
<td>200K</td>
<td>100K</td>
</tr>
<tr>
<td>2.5V</td>
<td>380K</td>
<td>120K</td>
</tr>
<tr>
<td>3.3V</td>
<td>540K</td>
<td>120K</td>
</tr>
</tbody>
</table>

As the input voltage approaches the output voltage, the converter turns the P-channel transistor continuously on. In this mode, the output voltage equals to the input voltage minus the voltage drop across the P-channel transistor:

\[
V_{\text{OUT}} = V_{\text{IN}} - I_{\text{LOAD}} \times (R_{\text{dson}} + R_L)
\]

Where \(R_{\text{dson}} \) = P-channel switch ON resistance, \(I_{\text{LOAD}} \) = Output current, \(R_L \) = Inductor DC resistance.

UVLO and Soft-Start

The reference and the circuit will remain reset until the VIN crosses its UVLO threshold. The ATI2301 comes with an internal soft-start circuit. The soft-start functions like a digital circuit to increase the switch current in several steps to the P-channel current limit (1500mA).

Short Circuit Protection

The switch peak current is limited cycle-by-cycle to a typical value of 1500mA. In the event of an output voltage short circuit, the device will operate with a frequency of 400 kHz and minimum duty cycle, therefore the average input current is typically 200mA.

Thermal Shutdown

When the die temperature exceeds 150°C, the system will reset and the process remains till the temperature decrease to 120°C, at which time the circuit can be restarted.

PCB Layout Check List

In order to ensure correct operation of this product, the following checklist should be used when laying out the PCBs. These items are also illustrated graphically in Figure 1. Check the following in your layout:
1. The power traces, including the GND trace, the SW trace and the VIN trace, which should be kept short, direct and wide.

2. Does the V_FB pin connect directly to the feedback resistors? The resistive divider R1/R2 must be connected between the (+) plate of C_{OUT} and ground.

3. Does the (+) plate of C_{IN} connect to V_{IN} as closely as possible? This capacitor provides the AC current to the internal power MOSFETs.

4. Keep the switching node, SW, away from the sensitive VFB node.

5. Keep the (-) plates of C_{IN} and C_{OUT} close.
Order Information

ATI2301

<table>
<thead>
<tr>
<th>Output Current</th>
<th>Pin Configuration</th>
<th>Package Type</th>
<th>Number of Pins</th>
<th>Output Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 800mA</td>
<td>A: Type 1. EN 2. GND 3. SW 4. VIN 5. VOUT /FB</td>
<td>A: SOT-23</td>
<td>B: 5</td>
<td>330: 3.3V 280: 2.8V 250: 2.5V 180: 1.8V 150: 1.5V 120: 1.2V ADJ: adj</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

Table 8. Unit Price

<table>
<thead>
<tr>
<th>Quantity</th>
<th>10-24</th>
<th>25-99</th>
<th>100-249</th>
<th>250-499</th>
<th>500-999</th>
<th>≥1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATI2301</td>
<td>$2.70</td>
<td>$2.25</td>
<td>$2.00</td>
<td>$1.85</td>
<td>$1.60</td>
<td>$1.35</td>
</tr>
</tbody>
</table>

NOTICE

1. ATI warrants performance of its products for one year to the specifications applicable at the time of sale, except for those being damaged by excessive abuse. Products found not meeting the specifications within one year from the date of sale can be exchanged free of charge.

2. ATI reserves the right to make changes to its products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

3. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Testing and other quality control techniques are utilized to the extent ATI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

4. Customers are responsible for their applications using ATI components. In order to minimize risks associated with the customers’ applications, adequate design and operating safeguards must be provided by the customers to minimize inherent or procedural hazards. ATI assumes no liability for applications assistance or customer product design.

5. ATI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of ATI covering or relating to any combination, machine, or process in which such products or services might be or are used. ATI’s publication of information regarding any third party’s products or services does not constitute ATI’s approval, warranty or endorsement there of.

6. IP (Intellectual Property) Ownership: ATI retains the ownership of full rights for special technologies and/or techniques embedded in its products, the designs for mechanics, optics, plus all modifications, improvements, and inventions made by ATI for its products and/or projects.