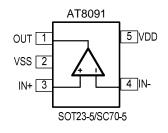
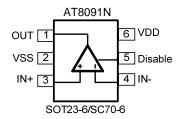
FEATURES

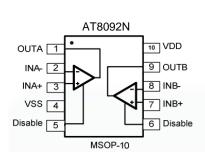

- Single-Supply Operation from +2.5V ~ +5.5V
- Rail-to-Rail Output
- -3dB Bandwidth(G=+1): 350MHz (Typ)
- Low Input Bias Current: 1pA (Typ)
- Quiescent Current: 4.2mA/Amplifier (Typ)
- Operating Temperature: -40°C ~ +125°C
- Small Package:

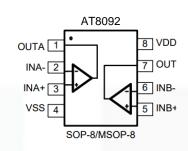
AT8091 Available in SOT23-5 and SC70-5 Packages AT8092 Available in SOP-8 and MSOP-8 Packages AT8094 Available in SOP-14 and TSSOP-14 Packages AT8091N Available in SOT23-6 and SC70-6 Packages AT8092N Available in MSOP-10 Packages

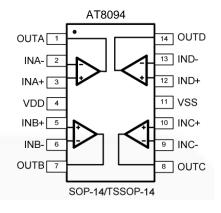
APPLICATIONS

- Imaging
- Photodiode Preamp
- DVD/CD
- Filters
- Professional Video and Cameras
- Hand Sets
- Base Stations
- A-to-D Driver


PIN CONFIGURATIONS




DESCRIPTION


The AT8091/1N(single), AT8092/2N(dual), AT8094 (quad) are rail-to-rail output voltage feedback amplifiers offering ease of use and low cost. They have bandwidth and slew rate typically found in current feedback amplifiers. All have a wide input commonmode voltage range and output voltage swing, making them easy to use on single supplies as low as 2.5V. Despite being low cost, the AT809X series provide excellent overall performance. They offer wide bandwidth to 350MHz (G = +1) along with 0.1dBflatness out to 58MHz (G = +2) and offer a typical low power of 4.2mA/amplifier.

The AT809X series is low distortion and fast settling make it ideal for buffering high speed A/D or D/A converters. The AT8091/2N has a power-down disable feature that reduces the supply current to 75µA. These features make the AT8091/2N ideal for portable and battery-powered applications where size and power are critical. All are specified over the extended -40°C to +125°C temperature range.

ABSOLUTE MAXIMUM RATINGS

Table 1.

Parameter	Min.	Max.	
Power Supply Voltage (V _{DD} to V _{SS})	-0.5V	+7.5V	
Analog Input Voltage (IN+ or IN-)	V _{SS} - 0.5	$V_{DD} + 0.5V$	
PDB Input Voltage	V _{SS} - 0.5	+7V	
Operating Temperature Range	-40°C	+125°C	
Junction Temperature	+1	60°C	
Storage Temperature Range	−55°C	+150°C	
Lead Temperature (soldering, 10sec)			
Package Thermal Resistance @ $T_A = +$	25°C		
SOP-8, θJA	125°C/W		
MSOP-8, θJA	216	°C/W	
SOT23-5, θJA	190	°C/W	
SOT23-6, θJA	190	°C/W	
SC70-5, θJA	333	°C/W	
SC70-6, θJA	333°C/W		
ESD Susceptibility			
НВМ	6kV		
MM	40	VOC	

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS

 $(G=+2,~R_F=600\Omega,~R_G=600\Omega,~and~R_L=150\Omega$ connected to $V_S/2,~unless$ otherwise noted. Typical values are at $T_A=+25^{\circ}C)$

Table 2.

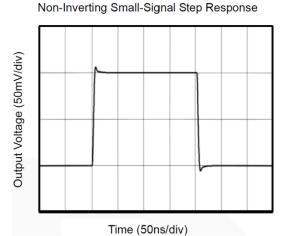
		AT8091/92/94/91N/92N						
PARAMETER	CONDITIONS	TYP.	ı	MIN./M	AX. OVE	R TEMPER	RATURE	
		+25°C	+25°C	0 to70°C	-40°C to70°C	-40°C to125°C	UNITS	MIN./ MAX.
DYNAMIC PERFORMAI	NCE							
	$G = +1$, $Vo = 0.1V_{p-p}$, $R_F = 24\Omega$, $R_L = 150\Omega$	335					MHz	TYP.
	$G = +1$, $Vo = 0.1V$ p-p, $R_F = 24\Omega$, $RL = 1k\Omega$	330					MHz	TYP.
–3dB Small Signal	$G = +2$, $Vo = 0.1V_{p-p}$, $R_L = 50\Omega$	79					MHz	TYP.
Bandwidth	$G = +2$, $Vo = 0.1V_{p-p}$, $R_L = 150\Omega$	130					MHz	TYP.
	$G = +2$, $Vo = 0.1V_{p-p}$, $R_L = 1k\Omega$	165					MHz	TYP.
	$G = +2, V_0 = 0.1V_{p-p},$ $R_L = 10k\Omega$	172					MHz	TYP.
C : D : D	$G = +10$, $R_L = 150\Omega$	180					MHz	TYP.
Gain-Bandwidth Product	$G = +10$, $R_L = 150\Omega$	195					MHz	TYP.
Bandwidth for 0.1dB Flatness	$G = +2$, $Vo = 0.1V_{p-p}$, $R_L = 150\Omega$, $R_F = 600\Omega$	71					MHz	TYP.
	G = +1, 2V Output Step	119/-232					V/µS	TYP.
Slew Rate	G = +2, 2V Output Step	135/-180					V/µS	TYP.
	G = +2, 4V Output Step	142/-206					V/µS	TYP.
	$G = +2$, $V_0 = 0.2V_{p-p}$, 10% to 90%	3.5					ns	TYP.
Rise-and-Fall Time	$G = +2$, $V_0 = 2V_{p-p}$, 10% to 90%	8.5					ns	TYP.
Settling Time to 0.1%	G = +2, 2V Output Step	35					ns	TYP.
Overload Recovery Time	$V_{IN} \cdot G = +VS$	14.5					ns	TYP.
NOISE/DISTORTION F	PERFORMANCE		1	1			1	1
Input Voltage Noise	f = 1MHz	4.3					nV/√Hz	TYP.
Differential Gain Error	$G = +2$, $R_L = 150\Omega$	0.004					%	TYP.

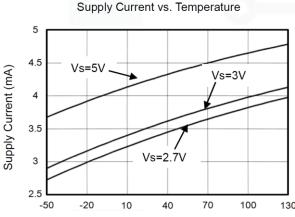
350MHz CMOS Rail to Rail Output Opamps

	~ (• ,	٠.	
Analog	Lech	inol	ogies	5

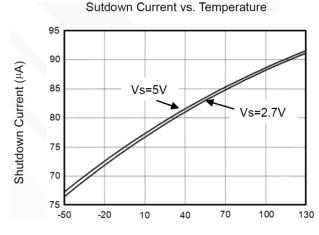
AT8091

y Littley 1	<u> </u>						AIS	DAT
(NTSC)								
Differential Phase Error (NTSC)	$G = +2$, $R_L = 150\Omega$	0.08					o	TYP.
DC PERFORMANCE								
Input Offset Voltage (Vos)		±2	±8	±8.5		±9.3	mV	MAX.
Input Offset Voltage Drift		2					μV/°C	TYP.
Input Bias Current (I _B)		1					pА	TYP.
Input offset Current (Ios)		2					pA	TYP.
Open-Loop Gain (A _{OL})	$V_{O}=0.3V$ to 4.7V, $R_{L}=150\Omega$	80	75	74	74	70	dB	MIN.
Open Loop Gain (AGL)	$V_{O} = 0.2V \text{ to } 4.8V,$ $R_{L} = 1k\Omega$	104	92	91	91	80	dB	MIN.
INPUT CHARACTERIS	TICS							
Input Common-Mode Voltage Range (V _{CM})		-0.2 to +3.8					V	TYP.
Common-Mode Rejection Ratio (CMRR)	$V_{CM} = -0.1V \text{ to } +3.5V$	80	66	65	65	62	dB	MIN.
OUTPUT CHARACTERI	STICS							
Output Voltage Swing	$R_L = 150\Omega$	0.12					V	TYP.
from Rail	$R_L = 1k\Omega$	0.03					V	TYP.
Output Current		120	100	98	93	87	mA	MIN.
Closed-Loop Output Impedance	f<100kHz	0.045					Ω	TYP.
POWER-DOWN DISAB	LE(AT8091/2N only)							
Turn-On Time			108				ns	TYP.
Turn-Off Time			60				ns	TYP.
DISABLE Voltage-Off				0.8			V	MAX.
DISABLE Voltage-On				2			V	MIN.
POWER SUPPLY								
Operating Voltage Range			2.5 5.5	2.7 5.5	2.7 5.5	2.7 5.5	V	MIN.
Quiescent Current (per amplifier)		4.2	5.3	5.6	5.7	6.1	mA	MAX.
Supply Current when Disabled per amplifier (AT8091/2N only)		75	120	130	132	137	μА	MAX.
Power Supply Rejection Ratio (PSRR)	$\Delta V_S = +2.7V \text{ to } +5.5V,$ $V_{CM} = (-V_S) +0.5$	80	67	67	65	62	dB	MIN.

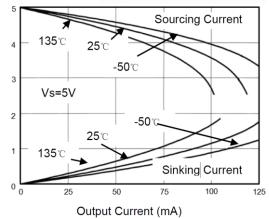

TYPICAL CHARACTERISTICS


(G=+2, R_F =600 Ω , R_G =600 Ω , and R_L =150 Ω connected to $V_S/2$, unless otherwise noted. Typical values are at $T_A = +25$ °C).

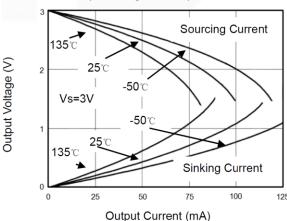
Non-Inverting Large-Signal Step Response



Time (50ns/div)

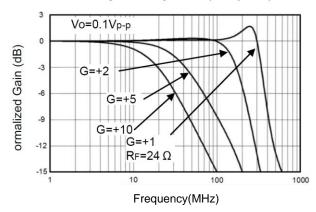


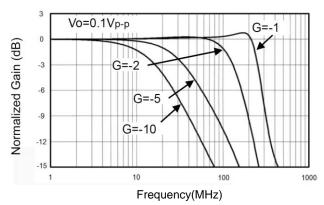
130



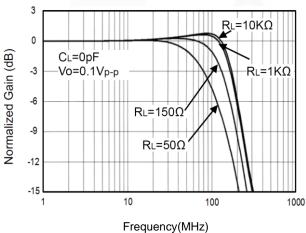
Output Voltage Swing vs. Output Current

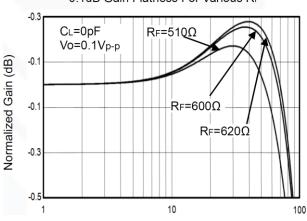
Output Voltage (V)

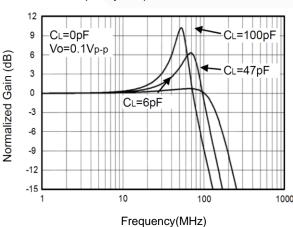

Output Voltage vs. Output Current

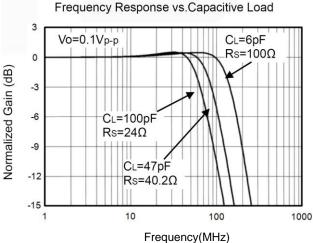

TYPICAL CHARACTERISTICS

(G=+2, R_F =600 Ω , R_G =600 Ω , and R_L =150 Ω connected to $V_S/2$, unless otherwise noted. Typical values are at $T_A = +25$ °C).

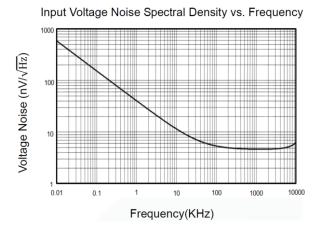

Non-Inverting Small Signal Frequency Response


Inverting Small Signal Frequency Response

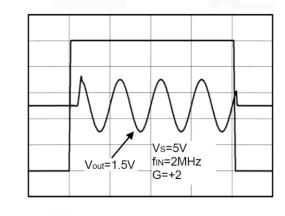

Frequency Response For Various RL


0.1dB Gain Flatness For Various RF

Frequency Response For Various CL



Frequency(MHz)



TYPICAL CHARACTERISTICS

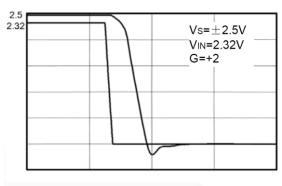
 $(G=+2, R_F=600\Omega, R_G=600\Omega, and R_L=150\Omega)$ connected to $V_S/2$, unless otherwise noted. Typical values are at $T_A=+25$ °C).

Large-Signal Disable/Enable Response

Time (500n/div)

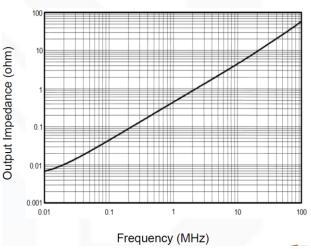
APPLICATION NOTES

Driving Capacitive Loads


Output Voltage (1V/div)

AT809X series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the AT809X series packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout


AT809X series operates from a single 2.5V to 5.5V supply or dual ± 1.25 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation.

Time(20ns/div)

Closed-Loop Output Impedance vs Frequency

For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors.

Low Supply Current

The low supply current (typical 4.2mA per channel) of AT809X series will help to maximize battery life. They are ideal for battery powered systems.

Operating Voltage

AT809X series operate under wide input supply voltage (2.5V to 5.5V). In addition, all temperature specifications apply from -40°C to +125°C. Most behavior remains unchanged throughout the full

operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of AT809X series can typically swing to less than 30mV from supply rail in light resistive loads (>1k Ω), and 120mV of supply rail in moderate resistive loads (150 Ω).

Capacitive Load Tolerance

The AT809X family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain.

Figure 1. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

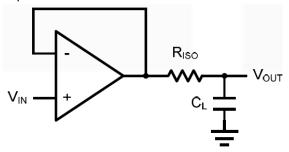


Figure 1. Indirectly Driving a Capacitive Load Using
Isolation Resistor

The bigger the RISO resistor value, the more stable VOUT will be. However, if there is a resistive load RL in parallel with the capacitive load, a voltage divider (proportional to $R_{\rm ISO}/R_L$) is formed, this will result in a gain error.

The circuit in Figure 2 is an improvement to the one in Figure 1. RF provides the DC accuracy by feed-forward the $V_{\rm IN}$ to $R_{\rm L}$. $C_{\rm F}$ and $R_{\rm ISO}$ serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of $C_{\rm F}$. This in turn will slow down the pulse response.

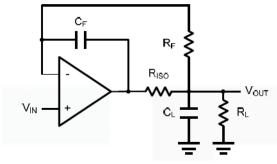


Figure 2. Indirectly Driving a Capacitive Load with DC Accuracy

APPLICATION CIRCUITS

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 3. shown the differential amplifier using AT809X.

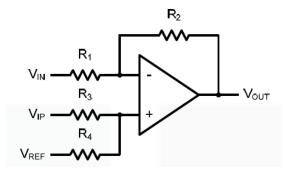


Figure 3. Differential Amplifier

$$V_{\text{out}} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R1=R3 and R2=R4), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 4. The DC gain is defined by -R2/R1. The filter has a -20dB/decade roll-off after its corner frequency $fC=1/(2\pi R3C1)$.

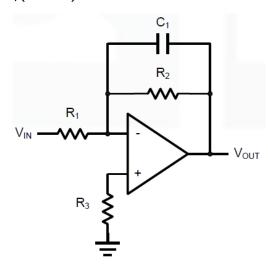
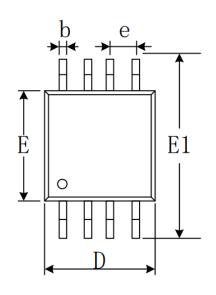
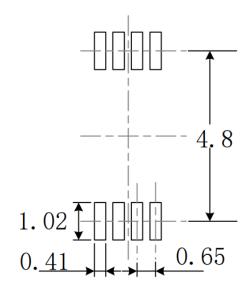
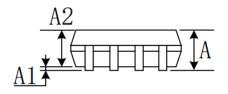


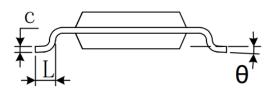
Figure 4. Low Pass Active Filter

Driving Video

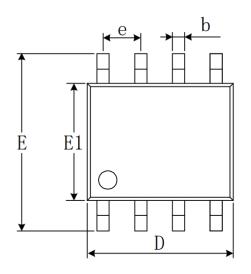

The AT809X can be used in video applications like in Figure 5.

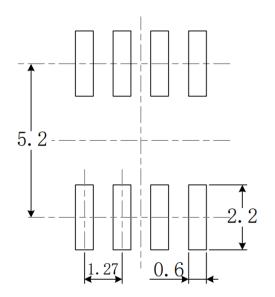


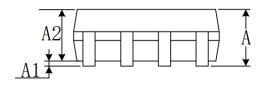

Figure 5. Typical video driving

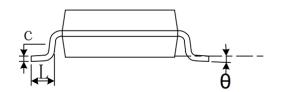

OUTLINE DIMENSIONS

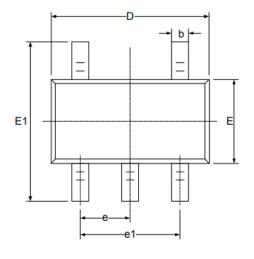
MSOP-8

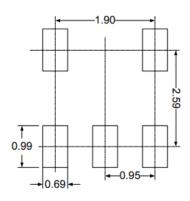


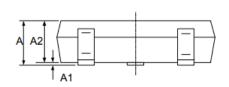


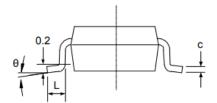

Symbol	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.650	(BSC)	0.026(BSC)		
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	


SOP8

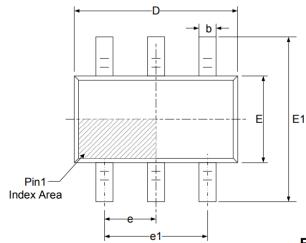

RECOMMENDED LAND PATTERN (Unit: mm)

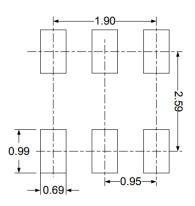


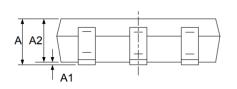


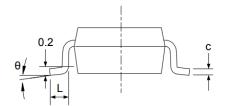

Symphol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270(BSC) 0.050(BSC		(BSC)		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

SOT23-5

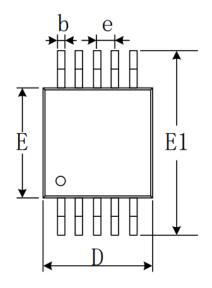


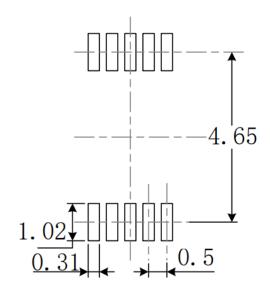


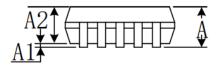



Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SOT23-6

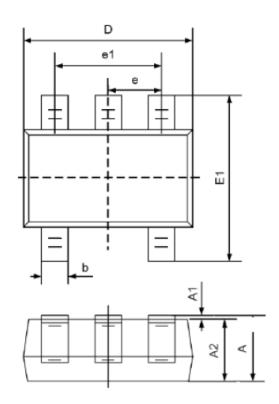


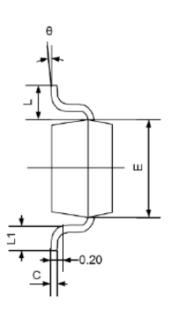




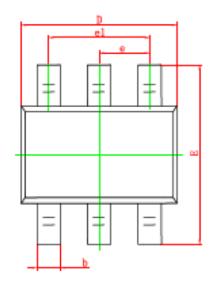

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0 °	8°	0°	8°	

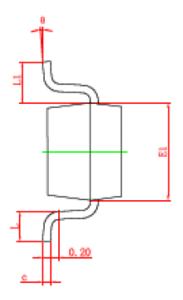
MSOP-10

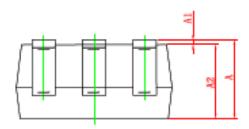




Sumb al	Dimensions	Dimensions In Millimeters		s In Inches
Symbol	Min	Max	Min	Max
Α	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.180	0.280	0.007	0.011
С	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
е	0.50(BSC)	0.020(BSC)	
E	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
L	0.400	0.800	0.016	0.031
θ	0°	6°	0°	6°

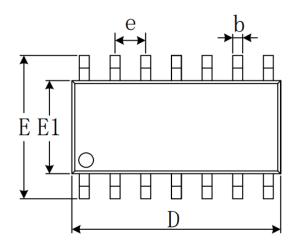

SC70-5

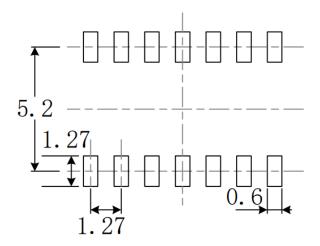


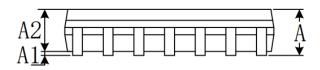


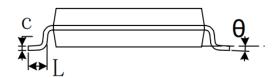
	Dimens	sions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650T	ΥP	0.026T	ΥP	
e1	1.200	1.400	0.047	0.055	
L	0.525REF		0.021REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

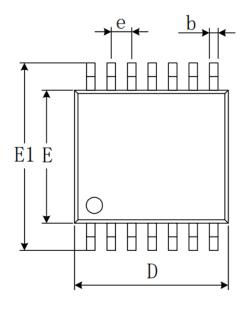
SC70-6

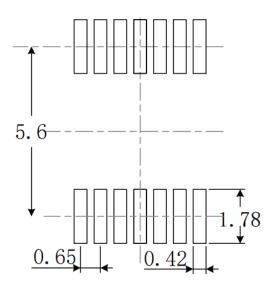





Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	2.150	2.450	0.085	0.096	
E1	1.150	1.350	0.045	0.053	
e	0.650	TYP.	0.026	TYP.	
e1	1.200	1.400	0.047	0.055	
L	0.260	0.460	0.010	0.018	
L1	0.525 REF.		0.021 REF.		
θ	0°	8°	0°	8°	


SOP14


RECOMMENDED LAND PATTERN (Unit: mm)




Compleal	Dimensions I	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.310	0.510	0.012	0.020	
С	0.100	0.250	0.004	0.010	
D	8.450	8.850	0.333	0.348	
е	1.270	(BSC)	0.050(BSC)		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TSSOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
А		1.200		0.047
A1	0.050	0.150	0.002	0.006
A2	0.800	1.050	0.031	0.041
b	0.190	0.300	0.007	0.012
С	0.090	0.200	0.004	0.008
D	4.860	5.100	0.191	0.201
E	4.300	4.500	0.169	0.177
E1	6.250	6.550	0.246	0.258
е	0.650(BSC)		0.026(BSC)	
L	0.500	0.700	0.020	0.028
Н	0.25(TYP)		0.01(TYP)	
θ	1°	7°	1°	7°

PACKAGE/ORDERING INFORMATION

Product	Channel	Ordering Number	Package	Package Option	Package Marking
AT8091	Single	AT8091-CR	SC70-5	Tape and Reel, 3000	8091
		AT8091-TR	SOT23-5	Tape and Reel, 3000	8091
AT8092	Dual	AT8092-SR	SOP-8	Tape and Reel, 4000	AT8092
		AT8092-SR	MSOP-8	Tape and Reel, 3000	AT8092
AT8094	Quad	AT8094-MR	TSSOP-14	Tape and Reel, 3000	AT8094
		AT8094-SR	SOP-14	Tape and Reel, 2500	AT8094
AT8091N	Single with shutdown	AT8091N-CR	SC70-6	Tape and Reel, 3000	8091N
		AT8091N-TR	SOT23-6	Tape and Reel, 3000	8091N
AT8092N	Dual with shutdown	AT8092N-MR	MSOP-10	Tape and Reel, 2500	GS8092N

ORDERING INFORMATION

Table 3. Ordering Information

Part Number	Buy Now
AT8091	* *

*: both and are our online store icons. Our products can be ordered from either one of them with the same pricing and delivery time.

NOTICE

- It is important to carefully read and follow the warnings, cautions, and product-specific notes provided with electronic components. These instructions are designed to ensure the safe and proper use of the component and to prevent damage to the component or surrounding equipment. Failure to follow these instructions could result in malfunction or failure of the component, damage to surrounding equipment, or even injury or harm to individuals. Always take the necessary precautions and seek professional assistance if unsure about proper use or handling of electronic components.
- 2. Please note that the products and specifications described in this publication are subject to change without prior notice as wecontinuously improve our products. Therefore, we recommend checking the product descriptions and specifications before placing an order to ensure that they are still applicable. We also reserve the right to discontinue the production and delivery of certain products, which means that not all products named in this publication may always be available.
- 3. This means that while ATI may provide information about the typical requirements and applications of their products, they cannot guarantee that their products will be suitable for all customer applications. It is the responsibility of the customer to evaluate whether an ATI product with the specified properties is appropriate for their particular application.
- 4. ATI warrants its products to perform according to specifications for one year from the date of sale, except when damaged due to excessive abuse. If a product fails to meet specifications within one year of the sale, it can be exchanged free of charge.
- 5. ATI reserves the right to make changes or discontinue products or services without notice. Customers are advised to obtain the latest information before placing orders.

350MHz CMOS Rail to Rail Output Opamps

AT8091

- 6. All products are sold subject to terms and conditions of sale, including those pertaining to warranty, patent infringement, and limitation of liability. Customers are responsible for their applications using ATI products, and ATI assumes no liability for applications assistance or customer product design.
- ATI does not grant any license, either express or implied, under any patent right, copyright, mask work right, or other intellectual property right of ATI.
- 8. ATI's publication of information regarding third-party products or services does not constitute approval, warranty, or endorsement.
- 9. ATI retains ownership of all rights for special technologies, techniques, and designs for its products and projects, as well as any modifications, improvements, and inventions made by ATI.
- 10. Despite operating the electronic modules as specified, malfunctions or failures may occur before the end of their usual service life due to the current state of technology. Therefore, it is crucial for customer applications that require a high level of operational safety, especially in accident prevention or life-saving systems where the malfunction or failure of electronic modules could pose a risk to human life or health, to ensure that suitable measures are taken. The customer should design their application or implement protective circuitry or redundancy to prevent injury or damage to third parties in the event of an electronic module malfunction or failure.

www.analogtechnologies.com Sales: sales@analogti.com Help Improve Datasheet: datasheet@analogti.com Tel.: (408) 748-9100