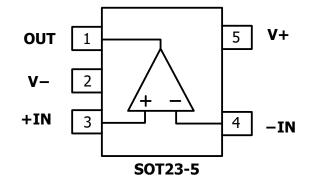


Figure 1. Physical Photos of AT8031

FEATURES

- Gain Bandwidth: 15kHz
- Rail to Rail Input and Output
- Input Offset Voltage: ±0.8mV (TYP)
- Input Offset Drift: ±2.3µV/°C
- Slew Rate: 7.5V/ms
- Low Noise: 2.4µV_{P-P} (0.1Hz to 10Hz)
- Input Voltage Range: -0.1V to +5.6V @Vs = 5.5V
- Supply Voltage Range: 1.4V to 5.5V
- Extended Temperature: -40°C to +125°C
- Micro Size Packages: SOT23-5

APPLICATIONS


- Sensors
- Photodiode Amplification
- Wearable Products
- Temperature Measurement
- Battery Powered Instruments
- Medical Instruments
- Temperature Measurements

DESCRIPTION

The AT8031 features low-voltage operation, rail-to-rail input and output capabilities, and an outstanding speed-to-power consumption ratio. It provides excellent bandwidth (15kHz) and a slew rate of 7.5V/ms. This operational amplifier is unity gain stable and also has an ultra-low input bias current.

This device is well-suited for sensor interfaces, active filters, and portable applications. The operational amplifier AT8031 is specified for the full temperature range of -40° C to $+125^{\circ}$ C under single or dual power supplies ranging from 1.4V to 5.5V.

PIN CONFIGURATIONS

PIN DESCRIPTION

Table 1: Pin Function

Pin #	Symbol	Description
1	OUT	Analog Output
3	+IN	Noninverting Input
4	-IN	Inverting Input
5	V+	Positive Power Supply
2	V–	Negative Power Supply

SPECIFICATIONS

Table 2. Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

Parameter	Rating	
Supply Voltage, V+ to V–	7.0V	
Input Terminals, Voltage ⁽²⁾	(V–) –0.5 to (V+) + 0.5V	
Output Terminals, Voltage (3)	(V−) −0.5 to (V+) + 0.5V	
Input Terminals, Current (2)	±10mA	
Output Terminals, Current ⁽³⁾	±50mA	
Output Short-circuit (4)	Continuous	
Storage Temperature	-65°C to +150°C	
Operating Temperature	-40°C to +125°C	
Junction Temperature	-40°C to +150°C	
ESD Susceptibility		
Human-body model (HBM)	±8000V	
Charge device model (CDM)	±500V	
Machine Model (MM)	±300V	

(1). Stresses above these ratings may cause

THERMAL CHARACTERISTICS

Table 3.

Package Type	SOT23-5	Unit
$R_{\theta JA}$ Junction-to-ambient thermal resistance	237.8	°C/W
$R_{\theta JC}$ (top) Junction-to-case (top) thermal resistance	126.8	°C/W
R _{0JB} Junction-to-board thermal resistance	85.9	°C/W
ψ_{JT} Junction-to-top characterization parameter	10.9	°C/W
$\psi_{\ensuremath{B}\xspace}$ Junction-to-board characterization parameter	84.9	°C/W

permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2). Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

(3). Output terminals are diode-clamped to the powersupply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to \pm 55mA or less.

(4). Short-circuit to ground, one amplifier per package.

ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality. Analog Technologies

An Analog in Silicon Valleys

AT8031

ELECTRICAL CHARACTERISTICS

(At $T_A = +25^{\circ}C$, $V_S = 5V$, $R_L = 1M\Omega$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
POWER SUPPLY						
Operating Voltage Range	Vs		1.4		5.5	V
Quiescent Current/Amplifier	IQ	$V_0 = 0$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		800	1500	nA
Power Supply Rejection Ratio	PSRR	$V_{S} = 2.5V$ to 5.5V, $V_{CM} = (V-)+0.5V$	62	70		dB
INPUT				•	•	
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	-4	±0.8	4	mV
Input Offset Voltage Average Drift	Vos/Tc	$V_{CM} = V_S/2$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±2.3		µV/°C
Input Bias Current	I _B	$V_{CM} = V_S/2$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-10	±1	10	pА
Input Offset Current	I _{OS}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-10	±1	10	pА
Common-Mode Voltage Range	Vсм	$V_s = 5.5V$	-0.1		5.6	V
Common Mada Daiastian Datia	CMRR	$V_s = 5.5V, V_{CM} = -0.1$ to 4V	73	90		dB
Common-Mode Rejection Ratio		$V_s = 5.5V, V_{CM} = -0.1$ to 5.6V	60	83		dB
OUTPUT	,			•		<u>.</u>
Open Leen Veltage Cain	A _{OL}	$\label{eq:Vs} \begin{array}{l} V_{s}=1.4V,R_{L}=50k\Omega,\\ V_{O}=V_{s}-0.1V \end{array}$	85	102		dB
Open-Loop Voltage Gain		$\label{eq:Vs} \begin{split} V_s &= 5.0V, R_L = 50 k \Omega, \\ V_O &= V_s - 0.1V \end{split}$	92	106		dB
Output Swing from Rail		$R_L = 50k\Omega$		5		mV
Output Short-Circuit Current	Isc	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		30		mA
DYNAMIC PERFORMANCE						
Slew Rate	SR			7.5		V/ms
Gain Bandwidth Product	GBP			15		kHz
Phase Margin	PM			60		0
NOISE PERFORMANCE	•			•	•	
Voltage Noise	en p-p	f = 0.01Hz to 10Hz		2.4		µVр-р
Voltage Noise Density	en	f = 1kHz		160		nV/√Hz

www.analogtechnologies.com Sales: sales@analogti.com Help Improve Datasheet: datasheet@analogti.com Tel.: (408) 748-9100

©Copyrights 2000-2024, Analog Technologies, Inc. All Rights Reserved. Updated on 2/1/2024 1161 Ringwood Ct, #110, San Jose, CA 95131, U. S. A. 3

An Analog in Silicon Valleys	Rail-to-Rail I/O CMOS Operational Amplifier
Analog Technolog	ies AT8031

TYPICAL CHARACTERISTICS

At $T_A = +25^{\circ}C$, $V_S = 5V$, $R_{LOAD} = 1M\Omega$ connected to $V_S/2$, $C_L=60pF$, $V_{CM} = V_S/2$, unless otherwise noted.

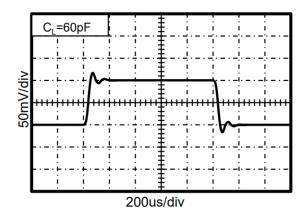


Figure 2. Small-Signal Step Response

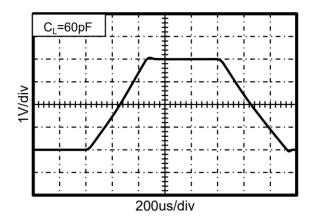


Figure 4. Large-Signal Step Response

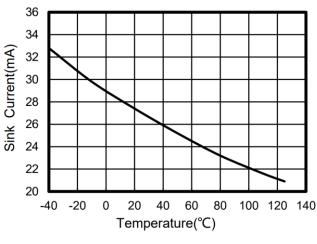


Figure 6. Sink Current vs Temperature

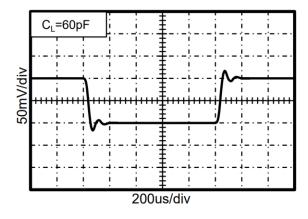


Figure 3. Small-Signal Step Response

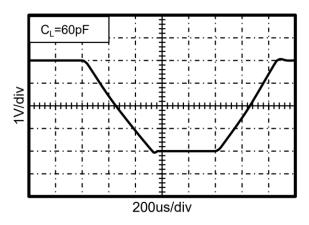
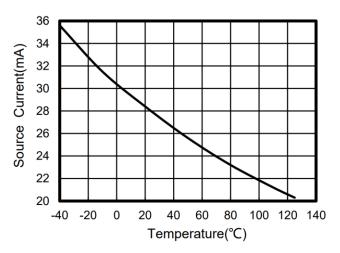
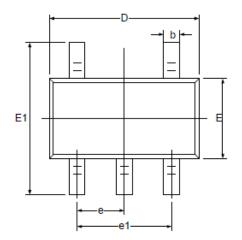
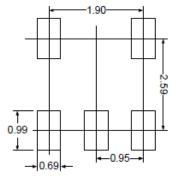
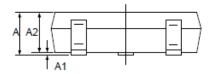


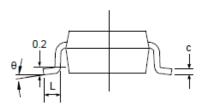
Figure 5. Large-Signal Step Response




Figure 7. Source Current vs Temperature


©Copyrights 2000-2024, Analog Technologies, Inc. All Rights Reserved. Updated on 2/1/2024 1161 Ringwood Ct, #110, San Jose, CA 95131, U. S. A. 4


OUTLINE DIMENSIONS


SOT23-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

www.analogtechnologies.com Sales: sal

Sales: sales@analogti.com Help Improve Datasheet: datasheet@analogti.com

Tel.: (408) 748-9100

©Copyrights 2000-2024, Analog Technologies, Inc. All Rights Reserved. Updated on 2/1/2024 1161 Ringwood Ct, #110, San Jose, CA 95131, U. S. A. 5

ORDERING INFORMATION

Part Number	Buy Now
AT8031	() * () *

NOTICE

- It is important to carefully read and follow the warnings, cautions, and product-specific notes provided with electronic components. These instructions are designed to ensure the safe and proper use of the component and to prevent damage to the component or surrounding equipment. Failure to follow these instructions could result in malfunction or failure of the component, damage to surrounding equipment, or even injury or harm to individuals. Always take the necessary precautions and seek professional assistance if unsure about proper use or handling of electronic components.
- 2. Please note that the products and specifications described in this publication are subject to change without prior notice as we continuously improve our products. Therefore, we recommend checking the product descriptions and specifications before placing an order to ensure that they are still applicable. We also reserve the right to discontinue the production and delivery of certain products, which means that not all products named in this publication may always be available.
- 3. This means that while ATI may provide information about the typical requirements and applications of their products, they cannot guarantee that their products will be suitable for all customer applications. It is the responsibility of the customer to evaluate whether an ATI product with the specified properties is appropriate for their particular application.
- 4. ATI warrants its products to perform according to specifications for one year from the date of sale, except when damaged due to excessive abuse. If a product fails to meet specifications within one year of the sale, it can be exchanged free of charge.
- 5. ATI reserves the right to make changes or discontinue products or services without notice. Customers are advised to obtain the latest information before placing orders.
- 6. All products are sold subject to terms and conditions of sale, including those pertaining to warranty, patent infringement, and limitation of liability. Customers are responsible for their applications using ATI products, and ATI assumes no liability for applications assistance or customer product design.
- 7. ATI does not grant any license, either express or implied, under any patent right, copyright, mask work right, or other intellectual property right of ATI.
- 8. ATI's publication of information regarding third-party products or services does not constitute approval, warranty, or endorsement.
- 9. ATI retains ownership of all rights for special technologies, techniques, and designs for its products and projects, as well as any modifications, improvements, and inventions made by ATI.

10. Despite operating the electronic modules as specified, malfunctions or failures may occur before the end of their usual service life due to the current state of technology. Therefore, it is crucial for customer applications that require a high level of operational safety, especially in accident prevention or life-saving systems where the malfunction or failure of electronic modules could pose a risk to human life or health, to ensure that suitable measures are taken. The customer should design their application or implement protective circuitry or redundancy to prevent injury or damage to third parties in the event of an electronic module malfunction or failure.