High Efficiency TEC Controller

TECA2-xV-xV-DAH

FEATURES

- High Efficiency: ≥90%
- Maximum Output Current: 1.5A
- Maximum Output Voltage: \(V_{VPS} - 0.3V \)
- Actual Object Temperature Monitoring
- High Stability: 0.01°C
- High Precision
- High Reliability
- Zero EMI
- Compact Size
- 100% lead (Pb)-free and RoHS compliant

DESCRIPTION

The TECA2-xV-xV-DAH is an electronic module designed for driving TECs (Thermo-Electric Coolers) with high stability in regulating the object temperature, high energy efficiency, zero EMI, and small package. Figure 1 is the photo of an actual TECA2-xV-xV-DAH.

The module provides interface components for users to configure desired object temperature range, i.e., set-point temperature range; maximum voltage across TEC, i.e., maximum TEC voltage; and the compensation network. The compensation network compensates the high order thermal load and thus stabilizes the temperature control loop.

It provides these functions: thermistor T-R curve linearization, temperature measurement and monitoring, temperature control loop status indication, TEC voltage monitoring, power up delay, and shut down.

The TECA2-xV-xV-DAH comes with a high stability low noise 3.0V voltage reference which can be used for setting the desired object temperature by using a POT (Potentiometer) or a DAC (Digital to Analog Converter). When using this reference for setting the set-point temperature, the set-point temperature error is independent of this reference voltage. This is because the internal temperature measurement network also uses this voltage as the reference, the errors in setting the temperature and measuring the temperature cancel with each other, setting the object temperature with higher stability. This reference can also be utilized by an ADC (Analog to Digital Converter), for the same reason, the measurement error will also be independent of the reference voltage, resulting in a more accurate measurement.

Figure 1 is the photo of the actual TECA2-xV-xV-DAH controller. Figure 2 is the real size top view of the controller showing the pin names and locations with the actual size. The pin functions are shown in Table 1.

Warning: This controller module can only be soldered manually on the board by a solder iron of < 310°C (590°F), it cannot go through a reflow oven process.

The TECA2-xV-xV-DAH is packaged in a 6 sided metal enclosure, which blocks EMIs (Electro-Magnetic Interferences) to prevent the controller and other electronics from interfering with each other.

![Figure 2. Pin Names and Locations](image-url)
SPECIFICATIONS

Table 1. Pin Function Descriptions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SD/TG</td>
<td>Both analog input and</td>
<td>Shutdown/Temperature good. When this pin is pulled low, the device shuts down. If this pin is left unconnected: When the actual temperature is lower than the preset temperature, the output voltage is 0.5\text{V}{\text{VPS}}; when the actual temperature reaches the preset one, the output voltage is \text{V}{\text{VPS}}.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
<td>Signal ground for the POT, ADC, DAC and the thermistor.</td>
</tr>
<tr>
<td>3</td>
<td>2.5VR</td>
<td>Analog output</td>
<td>2.5V Reference Output.</td>
</tr>
<tr>
<td>4</td>
<td>TMS</td>
<td>Analog input</td>
<td>Object set-point temperature input port. It is internally tied by a 500K resistor to the half value of the reference voltage, 1.25V. The open circuit voltage of this pin is thus 1.25V, corresponding to a set-point temperature of 25°C by using the default temperature network (with the set-point temperature range being from 15°C to 35°C). It is highly recommended to set this pin’s voltage by using the controller’s voltage reference. The lower limit of the setting voltage for this pin is 0.1V. Setting this pin to a <0.1V voltage may cause the controller over cooling the object.</td>
</tr>
<tr>
<td>5</td>
<td>TMO</td>
<td>Analog output</td>
<td>Actual object temperature. 0.1V to 2.5V indicates the default temperature network from 15°C to 35°C.</td>
</tr>
<tr>
<td>6</td>
<td>CMIN</td>
<td>Analog input</td>
<td>Compensation input pin for the thermal control loop. Leave it open in production.</td>
</tr>
<tr>
<td>7</td>
<td>VDR</td>
<td>Analog output</td>
<td>When \text{V}{\text{VDR}} is < 0.5\text{V}{\text{REF}}, it is in cooling mode; when \text{V}{\text{VDR}} is > 0.5\text{V}{\text{REF}}, it is in heating mode.</td>
</tr>
<tr>
<td>8</td>
<td>ITEC</td>
<td>Analog output</td>
<td>TEC Current Output. \text{I}{\text{COOLING}} = (\text{V}{\text{ITEC}} - 1.25)/0.525. \text{I}{\text{HEATING}} = (1.25V - \text{V}{\text{ITEC}})/0.525.</td>
</tr>
<tr>
<td>9</td>
<td>ILM</td>
<td>Digital input</td>
<td>Current Limit. This pin sets the TEC cooling and heating current limits. \text{V}{\text{ILIM} \text{HEATING}} = 2.5 \times \text{Rb/(Ra+Rb)} \text{V}{\text{ILIM} \text{COOLING}} = \text{V}{\text{ILIM} \text{HEATING}} + 40 \times \text{Ra} \parallel \text{Rb} \text{I}{\text{TEC} \text{MAX} \text{COOLING}} = (\text{V}{\text{ILIM} \text{COOLING}} - 1.25V)/0.525 \text{I}{\text{TEC} \text{MAX} \text{HEATING}} = (1.25V - \text{V}{\text{ILIM} \text{HEATING}})/0.525 \text{V}{\text{ILIM} \text{HEATING}} must not exceed 1.2V and \text{V}_{\text{ILIM} \text{COOLING}} must be more than 1.3V to leave proper margins between the heating and the cooling modes.</td>
</tr>
<tr>
<td>10</td>
<td>RTH</td>
<td>Analog input</td>
<td>Connect to the thermistor for sensing the desired object temp. Thermistor’s other end connects to the signal ground, pin 2. Rth = 10k\text{Ω}@25°C. Other thermistors or temperature sensors can also be used, consult with us. See Figure 4 for the connection.</td>
</tr>
<tr>
<td>11</td>
<td>TECP</td>
<td>Analog power output</td>
<td>Connects to TEC positive terminal</td>
</tr>
<tr>
<td>12</td>
<td>TECN</td>
<td>Analog power output</td>
<td>Connects to TEC negative terminal</td>
</tr>
<tr>
<td>13</td>
<td>PGND</td>
<td>Power ground</td>
<td>Power ground for connecting to the power supply</td>
</tr>
<tr>
<td>14</td>
<td>VPS</td>
<td>Power input</td>
<td>Positive power supply rail. The value is 5V.</td>
</tr>
</tbody>
</table>
High Efficiency TEC Controller

TECA2-xV-xV-DAH

Table 2. Characteristics (T_{ambient}=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Condition</th>
<th>Value</th>
<th>Unit/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object* temp. stability vs. ambient temp</td>
<td>V_{VPS}=5V, R_{load}=1.2Ω</td>
<td>0.0002</td>
<td>°C/°C</td>
</tr>
<tr>
<td>Object temp. vs. set-point. offset</td>
<td>T_{ambient} 0 ~ 50°C, set-point temp. is 15°C ~ 35°C</td>
<td>±0.1°C or ±15mV</td>
<td></td>
</tr>
<tr>
<td>Object temp. response time</td>
<td>≤0.1 to the set-point temperature at a 1°C step</td>
<td><5S</td>
<td>S</td>
</tr>
<tr>
<td>Efficiency</td>
<td>V_{VPS}=5V, R_{load}=3.2Ω</td>
<td>≥90%</td>
<td>V</td>
</tr>
<tr>
<td>Max. output current</td>
<td>V_{VPS}=5V, R_{load}=3.2Ω</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td>Max. output voltage</td>
<td>V_{VPS}=5V, R_{load}=3.2Ω</td>
<td>0 ~ (V_{VPS} - 0.2)</td>
<td>V</td>
</tr>
<tr>
<td>Operating temp. range</td>
<td>V_{VPS}=5V, R_{load}=3.2Ω</td>
<td>−40 ~ 85</td>
<td>°C</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>—</td>
<td>4.75 ~ 5.25 (specify 5)</td>
<td>V</td>
</tr>
<tr>
<td>Set-point temp.** control voltage</td>
<td>V_{VPS}=5V, R_{load}=3.2Ω</td>
<td>0.1 ~ 2.5</td>
<td>V</td>
</tr>
<tr>
<td>Default set-point temp. range***</td>
<td>V_{VPS}=3V</td>
<td>15 ~ 35</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temp. range</td>
<td>V_{VPS}=5V, R_{load}=3.2Ω</td>
<td>−55 ~ 125</td>
<td>°C</td>
</tr>
</tbody>
</table>

* Object temperature refers to the actual cold side temperature of the TEC, on which the target is mounted.
** Set-point temperature is the temperature desired to have on the target.
*** Can be customized to any range according to the requirement.
**** This TEC controller can only drive the TECs having > 1Ω impedance, which equals V_{MAX}/I_{MAX}.
***** After many experiments, according to the parameter and the figuring method of R_{load}, we advise customers to use R_{load} of 3.2Ω.

BLOCK DIAGRAM

The block diagram of the controller is shown in Figure 3.

![Figure 3. TEC Controller Block Diagram](image-url)

TEC controller connections are shown in Figure 4.

If you want to use this TEC controller for other applications not discussed here, such as using it with wave locker controllers, please consult us. The same as to other customizations, such as setting the TEMPSP by using a voltage source swings above 3V and/or VPS.

The TECA1 controller comes with a default temperature setting network, it sets the set-point temperature to be between 15°C to 35°C when setting the TEMPSP pin voltage to be between 0V to 3V linearly and using a specific de-facto “standard” 10k @ 25°C thermistor, with its R-T value data listed in Figure 6. When using different thermistors and/or needing different set-point temperature ranges, please contact us, we will configure the internal temperature network for you.

Note: This TEC controller doesn’t come with an internal compensation network and we don’t recommend using internal compensation network either. The compensation network is made of 5 components: 3 resistors and 2 capacitors and the values of the components in the network are the default values shown in Figure 4. Implementing the network externally is highly recommended since it can be modified for driving different thermal load and/or the thermal load characteristics is not certain or fixed at the early design stage.

Resistor Values

R1, R2, R3 are TEC temperature control parameters, see Figure 4. Required temperature parameters can be achieved through adjusting R1, R2 and R3, thus the TEC controller can detect the temperature range that users require.

In different temperature ranges, R1, R2 and R3 have different corresponding resistances. R1, R2 and R3 can be determined by:

\[
R_1 = R_{\text{MID}} + \frac{R_{\text{MID}}(R_{\text{LOW}} + R_{\text{HIGH}}) - 2* R_{\text{LOW}} * R_{\text{HIGH}}}{R_{\text{LOW}} + R_{\text{HIGH}} - 2* R_{\text{MID}}}
\]

\[
R_2 = R_1 - R_{\text{MID}}
\]

\[
R_3 = \frac{R_1(R_1 + R_{\text{LOW}} - R_{\text{MID}})}{R_{\text{LOW}} - R_{\text{MID}}}
\]

Where \(R_{\text{HIGH}} \) is the resistance of \(R_{\text{TH}} \) in the highest temperature of the set temperature range; \(R_{\text{MID}} \) is the resistance of \(R_{\text{TH}} \) in the medium temperature of the set temperature range; \(R_{\text{LOW}} \) is the resistance of \(R_{\text{TH}} \) in the lowest temperature of the set temperature range. For example, set the highest temperature 35°C and the lowest temperature 15°C, so the medium value is 25°C. By using the R-T table of a thermistor, \(R_{\text{HIGH}} \), \(R_{\text{MID}} \) and \(R_{\text{LOW}} \) can be achieved:

\(R_{\text{HIGH}} = 6.5k\Omega \); \(R_{\text{MID}} = 10k\Omega \); \(R_{\text{LOW}} = 15.7k\Omega \)

In accordance with the above three formulas, R1, R2 and R3 can be calculated:

\(R_1 = 17.6k\Omega \); \(R_2 = 7.6k\Omega \); \(R_3 = 71.8k\Omega \)
High Efficiency TEC Controller
TECA2-xV-xV-DAH

TYPICAL CHARACTERISTICS

Figure 5. Rth vs. Temperature

Figure 6. TEMPSP vs. Temperature

Figure 7. IRth vs. Temperature

Figure 8. VRth vs. Temperature

Figure 9. PRth vs. Temperature

Figure 10. Linearity error in TEMPSP vs. Temperature
MECHANICAL DIMENSIONS

The controller comes in two packages: one is DIP or D package, the other is SMT or S package. We have just introduced the DIP one in this doc, which comes with a part number: TECA2-xV-xV-DAH. You can also order the SMT one. Dimensions of the DIP package controller is shown in Figure 11.

![Dimensions of the DIP Package Controller of TECA2-xV-xV-DAH](image)

ORDERING INFORMATION

Table 3. Unit Price

<table>
<thead>
<tr>
<th>Quantity</th>
<th>1 - 9</th>
<th>10 - 49</th>
<th>50 - 199</th>
<th>200 - 499</th>
<th>≥500</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECA2-xV-xV-DAH</td>
<td>$54</td>
<td>$51</td>
<td>$48</td>
<td>$45</td>
<td>$43</td>
</tr>
</tbody>
</table>

WARNING: Both the surface mount and the through hole types of modules can only be soldered manually on the board by a solder iron of < 310°C (590°F), they cannot go through a reflow oven process.

NOTE: The power supply may have overshoot, when happens, it may exceed the maximum allowed input voltage, 6V, of the controller and damage the controller permanently. To avoid this from happening, do the following:

1. Connect the controller solid well with the power supply before turning on the power.
2. Make sure that the power supply has sufficient output current. It is suggested that the power supply can supply 1.2 to 1.5 times the maximum current the controller requires.
3. When using a bench top power supply, set the current limit to >1.5 times higher than the maximum current the controller requires.
NOTICE

1. ATI warrants performance of its products for one year to the specifications applicable at the time of sale, except for those being damaged by excessive abuse. Products found not meeting the specifications within one year from the date of sale can be exchanged free of charge.

2. ATI reserves the right to make changes to its products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

3. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Testing and other quality control techniques are utilized to the extent ATI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

4. Customers are responsible for their applications using ATI components. In order to minimize risks associated with the customers’ applications, adequate design and operating safeguards must be provided by the customers to minimize inherent or procedural hazards. ATI assumes no liability for applications assistance or customer product design.

5. ATI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of ATI covering or relating to any combination, machine, or process in which such products or services might be or are used. ATI’s publication of information regarding any third party’s products or services does not constitute ATI’s approval, warranty or endorsement thereof.

6. IP (Intellectual Property) Ownership: ATI retains the ownership of full rights for special technologies and/or techniques embedded in its products, the designs for mechanics, optics, plus all modifications, improvements, and inventions made by ATI for its products and/or projects.